
Wireless Independent Noble Gas Sampler: Software Overview

John Lyle, Ethan Fowler, Ian Sepdham, Hasif Shaikh, Khiloni Shah, Derek Haas

The University of Texas at Austin, 10100 Burnet Rd Bldg 159, Austin, TX 78758, johnlyleiv@utexas.edu

INTRODUCTION

Noble gas detection is an important part of monitoring

for underground nuclear explosions. Systems like the

Swedish Automatic Unit for Noble Gas Acquisition

(SAUNA) use beta-gamma coincidence counting with

incredibly low detection limits to collect and analyze gas

samples [1]. In order to improve noble gas detection, it is

important to understand how noble gases will move through

the local atmosphere surrounding a nuclear detonation. To

support this goal, the Wireless Independent Noble Gas

Sampler (WINGS) was designed and built at the University

of Texas. Details on the sampler hardware and previous

software design are discussed in a separate publication [2].

Fig. 1 shows a completed WINGS unit with fourteen sample

containers, a small air compressor, wiring box, and a 12V

battery.

To improve the autonomous sampling capabilities of

WINGS, a wireless communications network was needed.

The control system was required to be operated from a safe

distance, contain an error detection and handling subsystem,

and operate on an Arduino board at low levels of power draw.

To fulfill these requirements a Blynk control panel was set up

on an Arduino Mega using an ESP 8266 Wi-Fi microchip to

connect to a mobile Wi-Fi router included in each unit.

Fig. 1. Completed WINGS unit.

SOFTWARE DESIGN

Blynk is a web interface with modular control panels that

allows for full customization of the user interface. Choosing

Blynk came from three main needs: controlling a fleet of gas

samplers from one device, easy integration with existing

Arduino code, and a user-friendly interface that could be

operated without any additional software experience. The

Blynk interface also displays data which allows for a constant

display of pressure levels in the manifold to ensure the

sampler is operating correctly. This feature also allows the

user to monitor pressure levels on each gas cylinder.

Error Detection and Handling

WINGS was designed to collect pressurized samples

using a small air compressor. To mitigate the risk of

overpressurization or overheated components, error detection

and handling system was needed. The first step in creating

this system was to define a safe state for WINGS to exist in

as a remedy to any potential errors. This safe state closes all

valves to any open tanks preventing the loss of samples, turns

the compressor off preventing any further increase in

pressure, and opens the vent valve in the manifold to return it

to atmospheric pressure. To make sure the gas sampler is in

a safe state the gas sampler is constantly checking for errors

using multitasking as explained in the next section.

There are three main errors that the error detection

system is checking for:

1. The pressure sensor is returning positive values.

2. The pressure must never exceed 160 PSI.

3. The pump should not be on longer than

recommended by the manufacturer and operations

should follow a 50% duty cycle.

The first error occurs if the pressure sensor reads less than -2

PSI and causes the sampler to enter an error state before

returning to the safe state previously described This lets the

operator know that the pressure is not returning accurate

readings and must be recalibrated as negative gauge pressures

should never occur in the sampler. The maximum pressure

value for the second error was decided based on the

maximum pressure ratings of all components and a detailed

pressure safety analysis. If the network fails to cap the

pressure at 160 PSI, a pressure relief valve was attached to

the manifold and would be triggered at 200 PSI. For the third

error, WINGS will return to the safe state if the compressor

has been left on for more than 3 minutes and notify the

operator of the error.

The error handling system is integrated into the Blynk

interface such that any error will be updated onto the interface

along with instructions on fixing the error. In most cases a

manual inspection is needed to check for broken components

or loose connections. The Blynk interface includes a reset

button that is pushed by the operator to indicate a manual

inspection was performed before standard operations can

continue.

Multitasking

For all WINGS operations to run correctly many tasks

must be carried out simultaneously. This is not an issue for a

modern laptop since each core in a laptop can run its own

task. However, this is an issue for an Arduino Mega which

only has one core and can therefore only perform one

operation at a time. This creates a problem when an operation

such as a tank fill which takes a few minutes must be

performed. If the Arduino waited for this operation to occur

before checking for errors or scheduling additional

operations, then most errors would be missed. To work

around this a form of simulated multithreading was used.

This is called multitasking and allows multiple operations to

occur nearly simultaneously.

Multitasking is done by using a global timer with set

times that operations are supposed to occur as stored

variables. The Arduino then runs a constant loop that checks

for error states and then compares the current time to all times

where an operation is set to occur. If the time is passed when

the operation was supposed to occur, the Arduino then

performs that operation. A simple example of this is a tank

fill where the selected tank is being filled for a certain amount

of time. The obvious way to do this would be to turn the pump

on, wait for the time to be reached, and then turn the pump

off. However, this method does not use multitasking and

would not allow for error checking to occur at the same time.

This is undesirable because WINGS would not recognize

calibration issues in a pressure sensor while a fill was

occurring. To remedy this the following pseudocode can be

implemented instead. Here we are trying to fill the selected

tank for 10 seconds.

Main Loop:

Error Checking

Check if timer has hit 10 seconds

 If so turn off pump

 If not repeat loop

In the above code the fill has already started, and the loop

is running as fast as the Arduino can run allowing the timer

to be checked every few milliseconds. This time range is

acceptable for every sampler operation and allows WINGS to

multitask. Multitasking is not a complete fix since it still

requires well-written code. If an operation in the main loop

takes too long to occur the rest of the operations have to wait

for it to finish running.

Wireless Communications

To support noble gas monitoring, WINGS units would

be placed at different locations and must be controllable from

a central base station. A few methods were discussed but

ultimately a Wi-Fi hotspot was chosen. Wi-Fi hotspots were

a significant improvement over the previously used radio

transmission since it allowed the WINGS units to be

controllable from anywhere with a stable Internet connection.

However, this could pose an issue for deployments in remote

areas with limited Internet.

RESULTS

The wireless communications network was tested with

four WINGS units and was overall successful. The fleet was

able to be controlled from one device and samples were

successfully programmed and collected. Each WINGS unit

could be programmed individually to collect samples at

different pressures and at different times. The error handling

system consistently detected errors (including loose

connections) and would provide instructions to the user as

expected. Although WINGS successfully collected samples

and showed errors, there were improvements suggested for

the next iteration.

The biggest change noted was to allow WINGS to

continue fill cycle operations even if the Wi-Fi connection

was lost. This was especially important because the current

design of the software stops sampling whenever the

connection is lost. Before operations can continue, the error

must be reset and the previously collected samples must be

vented. Another recommended change was to further

improve the user-friendliness of the interface and include a

display of the battery voltage so the battery could be replaced

when needed. Finally, the software operates on central time

which would cause difficulties in different time zones. The

easiest solution to this would be to update the software to

operate on UTC.

SUMMARY

 WINGS was designed by a team of students at UT to

autonomously collect gas samples for later analysis in

support of atmospheric transport modeling. A wireless

communications network was created using Blynk and

integrated with existing Arduino code. Blynk had a user-

friendly interface and could control multiple gas samplers

from one device using Wi-Fi. A strong error detection and

handling system was introduced to allow for the safe

operation of WINGS.

Testing showed that the software functioned as desired,

but also revealed shortfalls of the code that could be

improved. Improved preliminary testing would find some of

the smaller bugs that could have easily been fixed ahead of

time. Introducing users to the software would also help them

be more familiar with the interface and provide feedback on

the usability and friendliness of the interface. Blynk proved

effective at programming each WINGS unit to collect gas

samples and detecting errors that occurred.

APPENDIX A: SOFTWARE FLOW CHART

Fig. A.1 Software File System Flow Chart

REFERENCES

[1] A. Ringbom, T. Larson, A. Axelsson, K. Elmgren,

and C. Johansson, “SAUNA - A system for

automatic sampling, processing, and analysis of

radioactive xenon,” Nucl Instrum Methods Phys Res

A, vol. 508, no. 3, pp. 542–553, Aug. 2003, doi:

10.1016/S0168-9002(03)01657-7.
[2] K. A. Shah et al., “Portable modular gas samplers

for nuclear explosion monitoring,” J Radioanal

Nucl Chem, vol. 331, no. 12, pp. 5305–5310, Dec.

2022, doi: 10.1007/S10967-022-08602-

9/FIGURES/5.

