

April 2025

Slicer for Multi-Axis 3D-Printing Manipulator

Final Design Presentation Sponsored by Dr. Zhengui Sha and the SiDi Lab

Agenda

- 1. Background
- 2. Project Requirements
- 3. Design
- 4. Testing
- 5. Conclusion

Problem Statement

Develop an integrated system for a 6-DOF robot arm equipped with an FDM extruder to allow for enhanced cooperative printing

The system should be capable of

- 3D model slicing
- Robot motion planning
- 3D printing capabilities

Agenda

1. Background

- a. Project Background
- b. Current Practices
- c. Background Research
- 2. Project Requirements
- 3. Design
- 4. Testing
- 5. Conclusion

Project Background

- Cooperative 3D printing is an emerging necessity for many manufacturing industries
- Has focused on printers with a 3-axis gantry system
- Incorporating multiple of these printers is difficult due to limited flexibility and size constraints
- Part of a multi-team project working with a 6-DOF arm in Dr. Sha's lab, where we collaborated with a FIRE team and other research students

Current Practices

3-Axis Gantry System

MakerBot. "MakerBot Sketch Large 3D Printer." MakerBot, https://www.makerbot.com/3d-printers/sketch-large/

- Difficult to integrate multiple gantry-based systems
- Size constraints
- Cannot print complex geometries

3-DOF Robot Arm

Epson. (n.d.). Epson Synthis T3 All-in-One SCARA Robots [Product image]. Epson America, Inc. https://epson.com/For-Work/Robots/SCARA/Epson-Synthis-T3-All-in-One-SCARA-Robots/b/RT3-401SS

- Low flexibility
- Causes collisions
- Size constraints

Background Research

Conformal 3D printing is where material is deposited along non-planar surfaces, conforming to the geometry of the underlying substrate

- Conformal 3D printing techniques
 - Trajectory Planning
 - Creating a path that conforms to an object's surface, allowing the printing of complex geometries with multiple curvatures
 - Algorithmic biomedical approach
 - Utilizes planar projection by taking a slice in the XY plane and projecting it on a non-planar surface

Background Research Cont.

Slicing Algorithms

- General methodology
 - Simple software pipeline for slicing algorithm
 - Common slicing practices and current standards
- Intersection Calculations
 - Looked into methodologies to calculate and find the points where the STL model meets each slicing plane

Agenda

- 1. Background
- 2. Project Requirements
 - a. Key Objectives
 - b. Functionalities
- 3. Design
- 4. Testing
- 5. Conclusion

Key Objectives

- Take in a standard 3D file format input (.STL)
- Slice the object and output "g-code" for robot arm
- Plan the robot's motion path
- Integrate the extruder hardware into UR5e system.
- Utilize the robot arm and extruder to 3D print
 - Try to print on conformal surfaces

Functionalities of Design

Functional Requirements	Need or Want	Means for Meeting Requirement	Testing/Verification		
Take in 3D file format input	N	Integrate open source packages into slicing algorithm	Ensure slicing data is correct		
Slicing of object	N	Slicing algorithm	Visualization + prototype testing		
Motion planning of robot arm	N	ROS2 system	Simulation + testing		
Integration of extruder and robot arm	N	Test and run both systems through one interface	Testing and calibration		
Enable planar FDM printing	planar FDM printing N Integration of all systems		Simulation + prototype testing		
Enable conformal FDM printing	W	Integration of all systems	Simulation + prototype testing		
Minimize volume occupied by robot arm	W	Optimize motion planning through ROS2	Simulation		

Agenda

- 1. Background
- 2. Project Requirements

3. Design

- a. Selected Design
- b. Software Architecture
- c. Hardware Integration
- d. Slicing Algorithm
- e. User Interface
- f. Motion Planning
- 4. Testing
- 5. Conclusion

Design Alternatives

Robot Software Design Alternatives:

- ROS1: End of life software support
- ROS2: Widely used in research
- Python Scripts: Inefficient for scaled system and integration

Slicing Software Design Alternatives

- Open Source Software: Incorrect outputs for UR5e robot arm
- Custom Slicer: Autonomy in decision making and output format

Hardware Design Alternatives:

- DuetBoard: Requires low level motor control
- Arduino: Direct communication with UR5e

Selected Design

Hardware Integration

- Arduino based custom circuitry
 - Direct communication with UR5e arm
 - Easy for prototyping
 - Allows for control of all hardware seamlessly

Slicing Software

- Custom Python based slicing algorithm
 - Customized functions, user inputs, and outputs
 - Integrates easily into ROS2 architecture

*Moveit 2 - Open source motion planning software

TEXAS ENGINEERING

Selected Design

Software Architecture

- ROS2 node based system
 - Easy integration with Python and C++
 - Enables multiple action servers
 - Built-in robot control packages

Motion Planning

- Custom Movelt2 Package
 - Built into ROS2
- Research standard for motion planning

- Custom RViz2 Panel
- Built into ROS2
- Allows for changes in user inputs
- Interactive marker interface

Software Architecture

- ROS2 node based system
- 9 custom ROS2 packages
 - 3 Movelt related packages
 - 3 UI/printing related packages
 - 1 slicing package
 - 1 test utilities package
 - 1 hardware integration package
- Action-server/publisher-subscribers

Extruder/Hardware Integration

- Controlling On/Off of motor and heating element -
 - Digital Outputs from Tool Head of UR5e are read by Arduino
- Temperature monitoring -
 - Arduino reads thermistor at Tool Head and sends to UR5e
- Two external power supplies
 - Heating element requires more Amps than UR5e can supply
 - Motor driver uses separate supply for better monitoring

	Pin#	Signal	Description			
^3	1	Al2 / RS485+	Analog in 2 or RS485+			
4	2	Al3 / RS485-	Analog in 3 or RS485-			
	3	TI1	Digital Inputs 1			
	4	TI0	Digital Inputs 0			
•7 1	5	POWER	0V/12V/24V			
	6	TO1/GND	Digital Outputs 1 or Ground			
6 7	7	TO0/PWR	Digital Outputs 0 or 0V/12V/24V			
-	8	GND	Ground			

Slicing Algorithm

Followed a common, simple slicing algorithm

Resources

- Open source slicing software
- Academic research articles

Goals

- Capacity to slice simple geometries
- Include solid infill
- Output as points (x,y,z) for the UR5e robot arm
- Include inputs for user to change

Slicing Algorithm

Calculation of Intersections

Contours and Infill for Layer z height = 0 mm

Closed Contour Loops

Interface panel for the user to set/alter settings and visualize/move the 3D object

Features and Capabilities:

- Standard slicing settings
- Interactive object placement
- Robot and bed visualization
- Integrated printer control

Key Dependencies:

Slicing	Settings	
Hotend	Status: OFF	
Select File		/home/john/jbliv/ros2_ws/src/URSlicer/test_stls/3DBenchy.stl
		Slice
		Slice Visualize

Slicing	Settings	
Layer He	eight (mm)	
0.4		
Infill De	nsity (%)	
100		
Tempera	ature (°C)	
255		
Print Sp	eed (mm/s)	
50.0		
Print Be	d Adhesion	
None		
Infill Pat	ttern	
Triangle	e	

Motion Planning

Necessary to calculate robot path and joint angles for robot arm to accomplish its trajectory

Features and Capabilities:

- Custom URDF package
- Universal Robotics control package
- Custom Movelt2 motion planning package
- Action-server for printing

Key Dependencies:

Motion Planning: Custom URDF

Integrates custom end effector into environment

Allows for collision aware motion planning

Motion Planning: Printing Path Planning

Final Prototype

- Arduino based circuitry
- Integrated python slicing algorithm
- ROS2 node based system
 - o 9 custom ROS2 packages
- Action-server/publisher-subscriber model

Agenda

- 1. Background
- 2. Project Requirements
- 3. Design
- 4. Testing
 - a. Hardware/Extruder
 - b. Slicing Algorithm
 - c. Robot Simulation
 - d. Systems Testing
- 5. Conclusion

Isolated Hardware

- Isolated each both systems (Motor & Heating)
 - Checking for proper powering and control
 - Calibrated temperature readings
- Results
 - Upgraded from Arduino Micro to Arduino Uno
 - Motor Driver has its own power supply due to inrush current faulting the UR5e
 - Both systems are fully integrated

Slicing Algorithm

- Utilized plotting and visualization for preliminary testing
- Verified data output points for layers with low resolution
- Tested integrated algorithm code with robot arm simulation
- Results
 - Time of algorithm: 0.44 to 0.73 sec
 - Works with various inputs: layer height, infill density, infill angle
 - Outputs data points for the UR5e robot arm to utilize

Robot Simulation

- Utilizes Universal Robotics mock arm simulation
- Custom ROS2 Testing Nodes:
 - Bed object creation
 - Mock slicing node
 - Mock hardware integration node

Systems Testing

Ran a full simulation of the software

- Full integration of the slicing, motion planning, and user interface
- Ran a full software test with the robot to run through layer-by-layer paths

Hardware

- Temperature control is inconsistent
 - Logic communication needs improvement
- Full control of motor

Agenda

- 1. Background
- 2. Project Requirements
- 3. Design
- 4. Testing

5. Conclusion

- a. Results
- b. Future Improvements
- c. Challenges
- d. Acknowledgements

Results

Functional Requirements	Need or Want	Means for Meeting Requirement	Testing/Verification			
Take in 3D file format input	N	Integrate open source packages into slicing algorithm	Ensure slicing data is correct Visualization + prototype testing Simulation + testing			
Slicing of object	N	Slicing algorithm				
Motion planning of robot arm	N	ROS2 system				
Integration of extruder and robot arm	N N		Testing and calibration			
Enable planar FDM printing	N	Integration of all systems	Simulation + prototype testing			
Enable conformal FDM printing W		Integration of all systems	Simulation + prototype testing			
Minimize volume occupied by robot arm	w	Optimize motion planning through ROS2	Simulation			

Future Improvements

- Create plans for a PCB to organize and reduce size of wiring
- Writing documentation so work can continue
- Testing printer settings to increase the quality of the prints
- ROS2 integration of wider project functionalities
- Improve infill generation to accommodate complex geometries

Challenges

- Having components run on different voltages created more complicated wiring
- Pose repeatability of the UR5e
- Learning new software languages and packages (C++, Movelt2)
- Planning and executing a large scale software based project

THANK YOU.

- Ronnie Stone, PhD Student
- Dr. Zhenghui Sha, Faculty Advisor & Sponsor
- Farzana Tasnim, Teaching Assistant
- Dr. Chris Rylander, Professor

Index A: Wiring

Controlling on/off of stepper and heating element

UR Cable Pin 5 (24V) → Buck Converter → Arduino 5V —Powering Arduino

UR Cable Pin 6 (TO1) → Voltage Divider → Arduino D4 — DO communicating Turn on/off extruder

UR Cable Pin 7 (TO0)→ Voltage Divider → Arduino D5 — DO communicating Turn on/off Heating Element

Controlling heating element power

Power Supply + → Heating Element +

MOSFET Drain → Heating Element -

MOSFET Source → Common GND

Arduino D6 → MOSFET Gate

Motor Driver control

Arduino D8/D9 → Motor Driver DIR/PWM

Arduino D7 → Motor Driver Enable

Sending temperature reading from Arduino to UR

Arduino A0 ← Thermistor Voltage Divider — Reading temperature

Arduino D10 \rightarrow 10k Resistor \rightarrow UR cable pin 2 (Al2) \rightarrow .1 μ F capacitor \rightarrow GND — Sending pwm back to tell what temp is

Index B: Media

Index C: BOM

Item No.		Component ~	Specification ~	# Required Qty		Purpose	Mouser #	Requested Qty 🗸	Unit Price 🗸	Price w/ Req Qty 🗸
Arduino & Sensors										
	1	Arduino Micro	5V logic		1	Main controller	782-A000093	1	\$22.10	\$22.10
	2	10kΩ Resistor	1/4 W		1	Pull-down resistor for thermistor	603-MFR-25FBF52-10K	5	\$0.10	\$0.50
UR5e to Arduino Communication	(Tool I/O)									\$0.00
	3	NPN Transistor	2N2222 or BC547		1	Switching 24V UR5e output to 5V Arduino input	610-2N2222	2	\$3.18	\$6.36
	4	1kΩ Resistor	34 W		1	Current-limiting for transistor base	279-H81K0FCA	4	\$0.92	\$3.68
	2	10kΩ Resistor	¾ W		1	Pull-down for transistor switching				\$0.00
	5	24V to 5V Buck Converter	24V to 5V step-down		1	Powering Arduino from UR5e	580-OKI78SR5/1.5W36C	2	\$4.97	\$9.94
Setpoint Transmission (UR5e \rightarrow A	rduino)									\$0.00
1000	2	10kΩ Resistor	34 W		2	Voltage divider for 24V digital signals				\$0.00
	6	2.2kΩ Resistor	1/4 W		2	Voltage divider for 24V digital signals	603-MFR-25FBF52-2K2	3	\$0.10	\$0.30
	7	Relay Module	5V relay (single-channel)		1	Controls the heating element	653-G5LE-1-DC5	2	\$1.39	\$2.78
Heating Element Control										\$0.00
	8	MOSFET	IRLZ34N (Logic-level)		1	If using DC heater instead of relay	942-IRLZ34NPBF	2	\$1.52	\$3.04
	4	1kΩ Resistor	¾ W		1	Gate resistor for MOSFET				\$0.00
	9	Flyback Diode	1N4007		1	Protects MOSFET/relay from voltage spikes	637-1N4007	2	\$0.10	\$0.20
Wiring & Connectors										\$0.00
	10	Breadboard	400 tie		1	Testing before making it permanent	426-FIT0096	2	\$2.90	\$5.80
	11	M - M wires	Male to Male wires		2	Test Wires for breadboard	932-MIKROE-513	2	\$3.60	\$7.20
	12	M - F Wires	Male to Femal		1	Test Wires for breadboard	932-MIKROE-512	1	\$3.60	\$3.60
Motor Driver									Total w/o Tax & Shipping	\$65.50
	13	Male m8 connector for tool	Male m8 connector for toolhead		1	Male m8 connector for toolhead	10-04505		Mouser Cart	Click
L	14	Motor Driver	2.8A		1	Motor Driver	TMC2209			

Index D: Gantt Chart

Link to Gantt Chart

Index E: Github

Link to Github Repo